NIR investigation of the rarefied flame of dichlorosilane oxidation at low pressures and 293 K

Victor I. Chernysh, Nikolai M. Rubtsov* and Georgii I. Tsvetkov

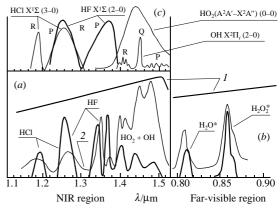
Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 095 962 8045; e-mail: ab3590@mail.sitek.ru

10.1070/MC2000v010n04ABEH001236

Electronically excited radicals HO_2 ($A^2A' - X^2A''$), vibrationally excited OH ($\nu = 2-0$), HCl ($\nu = 3-0$), combined vibrational bands of H_2O (0.823 μ m) and H_2O_2 (0.854 μ m) have been detected in the emission spectra of rarefied flame of dichlorosilane oxidation at 293 K and low pressures over the range 0.8–1.6 μ m.

The application of thin SiO_2 films in integrated circuit processing has evoked an increasing interest to the oxidation of silanes. Reacting with F_2 and Cl_2 , silanes form vibrationally excited HF and HCl, which are of interest to infrared chemical lasers. 2,3 The synthesis of nanosized particles based on the branching chain processes involving inorganic hydrides is also of considerable interest. The branching chain nature of dichlorosilane (DCS) oxidation has been established, but the kinetic mechanisms have not been yet assigned. Radicals OH $(A^2\Sigma^+)$, SiO $(A^1\Pi - X^1\Sigma)$, SiCl₂ $(A^1B_1, a^3B_1 - X^1A_1)$, and Cl atoms have been detected in DCS oxidation; the overall reaction for a stoichiometric mixture obeys the equation $SiH_2Cl_2 + O_2 \rightarrow SiO_2 + 2HCl$. The additives of SF_6 were found to act as an inhibitor on self-ignition and flame propagation in DCS + O_2 mixtures.

The aim of this work was to detect vibrationally excited species in a rarefied flame of DCS oxidation and to elucidate the mechanism of action of SF_6 additives on this reaction by NIR emission spectroscopy.


The experiments were carried out under static conditions at 293 K and total pressures in the range of 2-15 Torr. A cylindrical quartz reactor (12 cm in height and 12 cm in diameter) had inlets for power supply and gas evacuation and optical windows. The ignition was provided by a rapidly heated nichrome wire coil placed at the centre of the reactor. The reactor was evacuated to 4×10^{-4} Torr before each experiment. The mixtures of DCS + O₂ and SF₆ (if necessary) were prepared prior to an experiment. The NIR emission was modulated on a frequency of 3.3 kHz and detected through a silicon filter with an FD-10 photodiode sensitive in the range 0.8–1.6 μm, supplied with high-frequency amplifiers. The resulting signal recorded by an oscilloscope was alternating (and symmetric about the x axis) with a frequency of 3.3 kHz. The intensity of emission J at a specified wavelength λ was defined as the mean of the maximum signal amplitudes for 5–7 ignitions in the ranges $\Delta \lambda = 0.005 \, \mu \text{m}$; the dependence of J on λ was constructed. A grating (300 slits per millimetre) monochromator was calibrated using CH₂Cl₂ absorption bands. ¹⁰ The spectral width of the slit was 0.005 μm. Visible emission was recorded with a UV-VIS photomultiplier; it was also used for the start-up of recording.

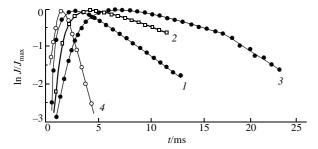
The NIR emission spectra of the initiated ignition of the mixtures 24% DCS + O_2 (thin solid curve) and 22% DCS + O_2 (thick solid curve) are shown in Figure 1(*a*). The O_2 HCl transitions (O_2 = 3–0, band centre 1.20 O_2 m, O_3 large and P-branches), electronically excited HO₂ transition O_3 and O_3 large (O_3 = 2–0, band centre 1.437 O_4 mm R-, O_3 and P-branches O_3 are observed in the spectrum.

In the far-visible region [0.7–0.9 μ m, recording by a photodiode without a silicon filter, Figure 1(*b*)] strong combined vibrational bands of H₂O* (λ = 0.823 μ m) and H₂O* (λ = 0.854 mm)¹⁴ are observed. This emission is probably due to the following reactions of H and HO₂:

$$H + O_2 + H_2O = HO_2 + H_2O^* + 47 \text{ kcal mol}^{-1}$$

 $HO_2 + HO_2 = H_2O_2^* + O_2 + 33.5 \text{ kcal mol}^{-1}$

The emission of HF (X¹ Σ) (ν = 2–0, band centre 1.29 μ m, R-and P-branches¹⁵) is observed in DCS oxidation in the presence


Figure 1 NIR emission spectra of rarified flames of DCS oxidation (intensities are given in arbitrary units): (a) thin solid line, a mixture of 23.5% DCS + O_2 in the NIR region; thick solid line, a mixture of 22% DCS + 18% SF₆ + O_2 in the NIR region; (b) thin solid line, a mixture of 22% DCS + 18% SF₆ + O_2 ; thick solid line, a mixture of 22% DCS + 18% SF₆ + O_2 , P = 3 Torr, slit, 1 mm; (1) spectral sensitivity of an FD-10 photodiode; (2) background emission of an aerosol; (c) the NIR emission spectrum simulated according to refs. 11–13.

of SF₆ [Figure 1(a), thick solid curve]. The emission intensity of HO₂ (A²A' – X²A'') and OH X² Π_i (ν = 2–0) decreases in the range 1.34–1.51 μ m. Therefore, the SF₆ additives efficiently quench electronically excited HO₂ radicals.

The mean temperature of combustion products (during the emission) can be estimated from the distribution of intensities of HCl $X^1\Sigma$ (v=3–0) and HF $X^1\Sigma$ (v=2–0) under the assumption that the rotational temperature $T_{\rm r}$ is close to the vibrational temperature $T_{\rm e}$. Figure 1 suggests¹¹ that for HCl (v=3–0) the rotational quantum number $j_{\rm max} \sim 12$ and for HF (v=2–0) $j_{\rm max} \sim 8$, which correspond to the maximum emission intensity. From the relationship¹¹ $j_{\rm max} \sim (kT/B_{\rm v})^{1/2}$, where k is the Boltzmann constant, $B_{\rm v}$ is the rotational constant ($B_{\rm v=3}=9.365$ or $B_{\rm v=2}=19.028$ cm⁻¹ for HCl or HF, respectively¹⁵), we have $T_{\rm r} \sim T_{\rm e} \sim 2000$ K. This value is close to the experimental data.

On the basis that HCl is the main stable final product^{8,16} and using known values of the probabilities of vibrational transitions in emission equal to 0.0379 (HCl, $\nu = 3$ –0) and 29.31 s⁻¹ (HF, $\nu = 2$ –0)¹⁷ and estimates of H₂O* and H₂O*₂ (~10 s⁻¹), ¹⁸ we can assess the amount of the particles from the ratio between intensities in spectra [Figure 1(*a*)]. These fractions make up (relative to HCl) for HF ~ 0.2%; for H₂O* and H₂O*₂ ~ 4.5%. The estimated fraction of H₂O vapour is close to the calculated (~1.72 mol%)¹⁹ equilibrium value in hot products of combustion of DCS + O₂ + 3.76 N₂.

It was found⁹ by high-speed schlieren cinematography that the ignition at the centre of reactor gives rise to propagation of a spherical flame. The spectra (Figure 1) makes up either the emission of final products from the volume of this sphere or the emission from a narrow zone of the propagating spherical front of a branching chain reaction. In this case, the temperature of final products is close to adiabatic with a specific heat of ~ 170 kcal mol⁻¹.8,16 To estimate the contribution from either

Figure 2 Kinetics of emission on initiated ignition: (1) 26.5% DCS + 7% $SF_6 + O_2$; (2) 23% DCS + 12% $SF_6 + O_2$; (3) 22% DCS + 18% $SF_6 + O_2$; (4) 22% DCS + 18% $SF_6 + O_2$; P = 3 Torr, 293 K. (1)–(3) Integral NIR emission (silicon filter), (4) integral visible emission (0.2–0.6 μ m).

emitting areas to the total emission, the time dependence of J in the visible and NIR regions was examined.

These functions for the mixtures of similar composition in visible $J_{\rm v}$ (Figure 2, curve 4) and NIR $J_{\rm r}$ (Figure 2, curves I-3) regions differ from one another. The time τ it takes for the attainment of $J_{\rm v}$ max is shorter than that for the attainment of $J_{\rm r\,max}$. An estimation of the visible velocity $U_{\rm v}$ of the flame propagation till the moment of the attainment of $J_{\rm v\,max}$ from Figure 2 ($V \sim R/\tau$, where R is the reactor radius) gives $U_{\rm v} \sim 20~{\rm m\,s^{-1}}$. This value is close to $U_{\rm v}$ measured by schlieren cinematography.⁹ Thus, $J_{\rm v}$ (curve 4) accounts for an intense reaction within the front of a branching chain process, 7 therewith $J_{\rm r}$ (curves I-3) accounts for further emission due to stable and slightly reactive final products. The characteristic times of decay of NIR emission are independent of the nature of the emitting species (HCl, HF, OH, HO₂). Therefore, Figure 1 represents the emission spectrum of combustion products from the volume.

It follows from curves 1–3 (Figure 2) that the time of occurrence of the excess vibrational excitation increases in the presence of SF₆, probably, due to the transfer of an excess of energy of SF₆ to the vibrational degrees of freedom of the products. Thus, SF₆ additives make an extra reservoir of vibrational energy. The fact that the kinetic curves of NIR emission of HCl, HF, OH and HO₂ have almost equal characteristic times of decay in the presence of SF₆ suggests that energy transfer to the vibrational modes of HCl, HF, H₂O and HO₂ occurs from the same energy reservoir. The heat losses by emission can be neglected because the probabilities of IR emission are low: e.g., for HCl in the ground state $X^{1}\Sigma$ and v = 1-0, 2-0, 3-0, these values make up 33.9, 2.32 and 0.49 s⁻¹;¹⁷ for combined transitions of H_2O (101–000) and (111–000), 26.4 and 2.15 s⁻¹.18 The losses can also occur through the emission of condensed particles (e.g., SiO₂). However (Figure 1), the intensity of the background emission decreases, and the characteristic time of the decay of NIR emission increases in the presence of SF₆ (see ref. 7). The excess of energy is not also related to overheated SiO₂ particles, because SF₆ additives markedly reduce the amount of an aerosol

The characteristic times of deactivation were estimated. The rate constants of vibrational deactivation, from $\nu=3,2,1$ to $\nu=2,1,0$ for HCl and O_2 predominantly inherent in the gas at the end of the reaction make up about 10^{-14} – 10^{-12} cm³ s⁻¹ over a range of 300–2000 K. 20 Thus, the characteristic times of V–V deactivation make up $\tau_{\rm V-V} \sim 10^{-3}$ – 10^{-5} s at a pressure of 3 Torr. The V–T process requires 10^3 – 10^5 collisions per second; thus, we have $\tau_{\rm V-T} \sim (10^3$ – $10^5)/(10^{17}\times 10^{-10})=10^{-5}$ – 10^{-3} s at 2000 K.

Therefore, $\tau_{\rm V-V}$ and $\tau_{\rm V-T}$ are close to each other. If so and if the rate of V-T energy transfer is higher than the rate of cooling of the products through heat transfer to the wall, the characteristic time of decay of $J_{\rm r}$ (Figure 2) must be equal to the charasteristic time of cooling. The following relationship holds for the regular regime of cooling of a spherical gas volume in the absence of heat sources:²¹

$$(T - T_0) \sim \exp(-k_1^2 \alpha t),\tag{1}$$

where k_1 is a minimum eigenvalue of the linear heat transfer equation, $k_1 = \pi/R$, $\alpha \sim D$ (diffusivity factor)²¹ is the temperature

conductivity. From (1), we have for the characteristic time of cooling τ ,

$$\tau_t^{-1} = k_1^2 D_0 (T/T_0)^{1.7} (P/P_0) \tag{2}$$

where D_0 is the diffusivity factor under standard conditions (300 K, 760 Torr) for combustion products, P and T are the pressure and temperature, respectively. For T = 1500 K, $D_0 = 1.6 \text{ cm}^2 \text{ s}^{-1}$; $P_0 =$ = 3 Torr, R = 6 cm, and τ_t^{-1} is ~220 s⁻¹. This value is really close to the experimental time $\sim 200 \text{ s}^{-1}$ (Figure 2, curves 1-3). It means that either V and T degrees of freedom come to equilibrium, i.e., $T_v = T$ or the time lag t before the beginning of cooling results from energy transfer from the reservoir of vibrational energy of the SF_6 additive. As can be seen in Figure 2, t increases as a fraction of SF_6 increases. Thus, SF_6 molecules passing through the front of a branching chain reaction would acquire the excess of energy over equilibrium. The transformation of this energy to heat energy occurs almost without losses. This is supported by the fact that the resulting degree of expansion of products is close to adiabatic9,22 at different contents of SF₆ even with regard to a change in the overall heat capacity of final products $C_{\rm p}$. However, a marked decrease in $U_{\rm v}$ in the presence of ${\rm SF_6}^{9,22}$ (Figure 2, curves 3 and 4) cannot be explained only by the thermal nature of flame propagation because of $U_{\rm v} \sim C_{\rm p}^{-1/2}$.21

Processes that may be responsible for the decrease in U_{v} in the presence of SF₆ are considered below. It is well known that in the presence of SF₆ the upper limit of the self-ignition of the $H_2 + O_2$ reaction²³ decreases because of the termolecular reaction $H + O_2 + SF_6 \rightarrow HO_2 + SF_6^{V-V}$ (the resulting HO_2 is slightly active). The SF_6 additives to $H_2 + O_2 + Ar$ flames over the temperature range 1300-1940 K react with H atoms.²⁴ The rate constant of $H + SF_6 \rightarrow HF + SF_5$ (chain termination) is $2 \times 10^{15} \times \exp(-30000/RT)$ cm³ mol⁻¹ s⁻¹. SF₆ is also an efficient inhibitor in rich H_2 -air flames, 25 leading to a marked decrease of U_y , therewith its thermal dissociation occurs only at T > 1500 K, since the S–F bond strength is ~60 kcal mol⁻¹.²⁶ The inhibitory effect of SF_6 on the propagation of the spherical $H_2 + O_2$ flame was observed previously. 14 It was found that the visible emission is caused by processes involving O and H atoms and OH radicals; the NIR emission with longer characteristic times is due to H₂O, H₂O₂ and HO₂, emitting at the resulting temperature of combustion. The H₂O formation is accompanied by the emission at $\lambda = 0.823 \,\mu\text{m}$, and HO₂ formation in the reaction HO₂ + HO₂ \Rightarrow \rightarrow H₂O₂* + O₂, by the emission at $\lambda = 0.852 \,\mu\text{m}^{14}$ (Figure 1). These data suggest either the parallels between the impact of SF₆ on the reactions of H₂ and DCS oxidation or the influence of the chemical nature of the additive on U_{v} even when a considerable warming-up occurs. The influence is caused by a change in the rate of the termolecular chain termination $H + O_2 + M \Rightarrow$ \rightarrow HO₂ + M in the developing combustion.²⁴ Thus, the inhibitory effect of SF₆ is due to reactions providing the change-over from the active centre of reaction chains (namely, H atoms) to slightly active species: $H + SF_6 \rightarrow HF + SF_5$ or $HF^{V-V} + SF_5$; and $H + O_2 + SF_6 \rightarrow HO_2 + SF_6^{V-V}$. The latter reaction is also accompanied by the transfer of an excess of energy to SF₆ molecules.

We are grateful to V. V. Azatyan, corresponding member of the RAS, for many useful discussions.

This work was supported by the Russian Foundation for Basic Research (grant nos. 99-03-32250a and 00-03-32979a).

References

- 1 S. Cze, VLSI Technology, Murray Hill, New York, 1981, vol. 1, p. 620.
- C. P. Conner, G. W. Stewart, D. M. Lindsay and J. H. Fole, *J. Am. Chem. Soc.*, 1977, 99, 2540.
- 3 H. W. Chang and D. W. Setser, J. Chem. Phys., 1973, 58, 2298.
- 4 R. F. Khairutdinov, Usp. Khim., 1998, 67, 125 (Russ. Chem. Rev., 1998, 67, 109).
- 5 A. A. Vartanyan, *Ph.D. Thesis*, Institute for Structural Macrokinetics, Chernogolovka, 1991, p. 152 (in Russian).
- 6 V. V. Azatyan, A. A. Vartanyan, V. A. Kalkanov and S. M. Temchin, Kinet. Katal., 1991, 32, 511 [Kinet. Catal. (Engl. Transl.), 1991, 32, 456].
- 7 N. M. Rubtsov, G. I. Tsvetkov and V. I. Chernysh, *Kinet. Katal.*, 1997, 38, 498 [*Kinet. Catal. (Engl. Transl.)*, 1997, 38, 391].

- 8 N. M. Rubtsov, G. I. Tsvetkov and V. I. Chernysh, *Kinet. Katal.*, 1995, **36**, 645 [*Kinet. Catal. (Engl. Transl.)*, 1995, **36**, 556].
- V. P. Karpov, N. M. Rubtsov, O. T. Ryzhkov and S. M. Temchin, Khim. Fiz., 1998, 17, 73 [Chem. Phys. Reports (Engl. Transl.), 1998, 17, 729].
- 10 I. M. Kustanovich, Spektral'nyi analiz (Spectral Analysis), Vysshaya Shkola, Moscow, 1967, p. 392 (in Russian).
- C. N. Bauwell, Fundamentals of Molecular Spectroscopy, McGraw-Hill, London, 1983, p. 382.
- 12 K. H. Becker, H. H. Fink, P. Langen and U. Schurach, J. Chem. Phys., 1974, 60, 4623.
- 13 P. E. Charters and J. C. Polanyi, Can. J. Chem., 1960, 38, 1742.
- 14 M. Abid, J. S. Wu, J. B. Lin, P. D. Ronney, U. Meki, K. Maruta, H. Kobayashi and T. Niioka, *Combust. Flame*, 1999, **116**, 348.
- 15 A. A. Radtzig and B. M. Smirnov, Spravochnik po atomnoi i molekulyarnoi fizike (Handbook on Atomic and Molecular Physics), Moscow, Atomizdat, 1980, p. 240 (in Russian).
- 16 L. F. Britton, Plant/Operations Progress, 1990, 9, 16.
- 17 J. M. Herbelin and T. Emanuel, J. Chem. Phys., 1974, **60**, 689.
- 18 D. E. Burch, D. A. Tryvnak, R. R. Pitty and C. E. Bartley, *JOSA*, 1969, 59, 267.
- 19 R. G. Aivazyan, V. V. Azatyan, V. I. Kalachov, V. I. Rubtsov and N. Yu. Chomenko, Fiz. Goren. Vzryva, 1994, 35, 77 (in Russian).

- 20 Fizicheskiye velichiny. Spravochnik (Handbook on Physical Values), eds. I. S. Grigoryev and E. Z. Meilichov, Energoatomizdat, Moscow, 1991, p. 1232 (in Russian).
- 21 D. A. Frank-Kamenetskii, Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Nauka, Moscow, 1967, p. 492 (in Russian).
- 22 V. P. Karpov, N. M. Rubtsov, G. I. Tsvetkov and V. I. Chernysh, *Khim. Fiz.*, 2000, in press.
- 23 Khimicheskaya kinetika i tsepnye reaktsii (Chemical Kinetics and Chain Reactions), ed. V. N. Kondratiev, Nauka, Moscow, 1966, p. 312 (in Russian).
- 24 C. P. Fenimore and T. W. Jones, Combust. Flame, 1964, 13, 231.
- 25 D. R. Miller, R. L. Evers and T. B. Skinner, *Combust. Flame*, 1961, 7, 137.
- 26 Handbook of Chemical Lasers, eds. R. W. F. Fross and J. F. Bott, J.Wiley & Sons, New York, 1976, p. 659.

Received: 29th November 1999; Com. 99/1563